Browse By Unit
3 min read•june 18, 2024
Kanya Shah
Jed Quiaoit
Kanya Shah
Jed Quiaoit
In order to use the binomial distribution to model a random event, the event must meet the following four conditions: 4️⃣
If any of these conditions is not met, then the event cannot be modeled using the binomial distribution. For example, suppose you want to use the binomial distribution to model the number of heads in 10 flips of a biased coin that has a probability of heads of 0.8 on the first flip, 0.6 on the second flip, and so on. In this case, the probability of success is not the same on each trial, so the event cannot be modeled using the binomial distribution.
Before proceeding, it's important to note that these formulae only apply in binomial settings, where the conditions for the binomial distribution are met. If the conditions for the binomial distribution are not met, then these formulae will not be appropriate for calculating the mean and standard deviation of the random variable. ✔️
This rule is based on the assumption that the sample is representative of the population, and that the probability of success is the same in the sample as it is in the population. If these assumptions are not met, then the binomial model may not be appropriate, even if the sample size is less than 10% of the population size.
🎥 Watch: AP Stats - Probability: Random Variables, Binomial/Geometric Distributions
<< Hide Menu
3 min read•june 18, 2024
Kanya Shah
Jed Quiaoit
Kanya Shah
Jed Quiaoit
In order to use the binomial distribution to model a random event, the event must meet the following four conditions: 4️⃣
If any of these conditions is not met, then the event cannot be modeled using the binomial distribution. For example, suppose you want to use the binomial distribution to model the number of heads in 10 flips of a biased coin that has a probability of heads of 0.8 on the first flip, 0.6 on the second flip, and so on. In this case, the probability of success is not the same on each trial, so the event cannot be modeled using the binomial distribution.
Before proceeding, it's important to note that these formulae only apply in binomial settings, where the conditions for the binomial distribution are met. If the conditions for the binomial distribution are not met, then these formulae will not be appropriate for calculating the mean and standard deviation of the random variable. ✔️
This rule is based on the assumption that the sample is representative of the population, and that the probability of success is the same in the sample as it is in the population. If these assumptions are not met, then the binomial model may not be appropriate, even if the sample size is less than 10% of the population size.
🎥 Watch: AP Stats - Probability: Random Variables, Binomial/Geometric Distributions
© 2024 Fiveable Inc. All rights reserved.