Browse By Unit
Peter Apps
Peter Apps
Unit 3 is all about connecting electrical devices together. We'll look at different types of circuits, how to calculate the flow of electricity through a circuit, and do some analysis of the current, power, and potential difference in various locations in a circuit.
This unit makes up 17-23% of the AP exam and will take 13-26 days to cover depending on class length. The Unit 3 personal progress checkpoint on AP Classroom has around 35 multiple choice questions and 1 free response question for you to practice and check your understanding with.
Make sure to read this important note:
** Since many physics teachers do not teach circuits in AP Physics 1 anymore, as it's been cut out of the exam curriculum, reviewing our AP Physics 1 guides for the circuits content may prove helpful to your studying! **
In Unit 1, we studied voltage and defined it as work per unit charge. There are 2 other important quantities used along with voltage to describe the features of a circuit: current and resistance.
A common analogy for how voltage, current, and resistance are related to each other is to think of an electric circuit like water flowing through a hose. Voltage is similar to the water pressure, current is similar to the amount of water that gets through the hose, and resistance is similar to mud or dirt that gets stuck in the hose and starts to clog it.
** Conventional Current is defined as the direction a positive charge carrier will travel. This may seem strange to us since chemistry tells us that the electrons are the mobile part of the atom. Nevertheless, there are several advantages to choosing a positive direction, since that aligns with our choices in direction when it comes to electric fields and potential differences (see Unit 1). **
On a microscopic level, current is also related to the drift velocity (v_d) of the individual charge carriers. Drift velocity can be thought of as the average velocity of each charge carrier as it moves through a wire. In the image below, we're looking at the path of the electron as it moves through a wire.
We can imagine that the current in the wire would depend on the total number of charge carriers moving through the wire as well. A larger diameter wire would allow for more carriers. Combining these ideas together we can derive an equation for current.
There are two main ways to connect components in an electrical circuit: series or parallel. In a series connection, the components are arranged in a single line, and the current flows through one path. In a parallel circuit, the components are arranged with multiple paths for the current to flow through. This means that the current is divided between the available paths.
<< Hide Menu
Peter Apps
Peter Apps
Unit 3 is all about connecting electrical devices together. We'll look at different types of circuits, how to calculate the flow of electricity through a circuit, and do some analysis of the current, power, and potential difference in various locations in a circuit.
This unit makes up 17-23% of the AP exam and will take 13-26 days to cover depending on class length. The Unit 3 personal progress checkpoint on AP Classroom has around 35 multiple choice questions and 1 free response question for you to practice and check your understanding with.
Make sure to read this important note:
** Since many physics teachers do not teach circuits in AP Physics 1 anymore, as it's been cut out of the exam curriculum, reviewing our AP Physics 1 guides for the circuits content may prove helpful to your studying! **
In Unit 1, we studied voltage and defined it as work per unit charge. There are 2 other important quantities used along with voltage to describe the features of a circuit: current and resistance.
A common analogy for how voltage, current, and resistance are related to each other is to think of an electric circuit like water flowing through a hose. Voltage is similar to the water pressure, current is similar to the amount of water that gets through the hose, and resistance is similar to mud or dirt that gets stuck in the hose and starts to clog it.
** Conventional Current is defined as the direction a positive charge carrier will travel. This may seem strange to us since chemistry tells us that the electrons are the mobile part of the atom. Nevertheless, there are several advantages to choosing a positive direction, since that aligns with our choices in direction when it comes to electric fields and potential differences (see Unit 1). **
On a microscopic level, current is also related to the drift velocity (v_d) of the individual charge carriers. Drift velocity can be thought of as the average velocity of each charge carrier as it moves through a wire. In the image below, we're looking at the path of the electron as it moves through a wire.
We can imagine that the current in the wire would depend on the total number of charge carriers moving through the wire as well. A larger diameter wire would allow for more carriers. Combining these ideas together we can derive an equation for current.
There are two main ways to connect components in an electrical circuit: series or parallel. In a series connection, the components are arranged in a single line, and the current flows through one path. In a parallel circuit, the components are arranged with multiple paths for the current to flow through. This means that the current is divided between the available paths.
© 2024 Fiveable Inc. All rights reserved.