Browse By Unit
Briana Dokken
Briana Dokken
As of 2021, College Board only tests Units 1-7 on the AP Physics 1 exam. This page's content will not be tested on the exam, but we kept it online for you all as a resource.
Charge is a property of matter, just like mass, physical state, or density. When an atom has the same number ofΒ protons (positively charged particles) andΒ electrons (negatively charged particles), the positive and negative charges of the atom cancel out, and its net charge is 0; we refer to the atom as uncharged when this occurs. However, when electrons are taken away or added to an atom, it becomes charged. Charge depends entirely on the movement of electrons.Β Β Β
There are two kinds of charge: positive charge and negative charge. Electrons have a negative charge, so an atom becomes negatively charged when it has additional electrons. When you take away electrons from an atom, it becomes positively charged because the substance's protons outnumber the number of electrons. Like with magnets, opposite forces attract and like forces repel when discussing protons and electrons. Therefore:
The arrangement of electrons can also influence charge. A substance can have a partial charge and repel or attract other charged objects, even if there is no change in electron count, like in the case of dipoles. For example, if a substance's electrons move to one side, that occupied half will have a partial negative charge, and the other side will have a partial positive charge. Physicists refer to this separation of positive and negative charges as aΒ dipole.
Often, we call charged particles "charges" or "point charges" if we assume that the charge focuses at a single point. If you see the word "charge" from here on out, know that it means a charged particle.
When two charges are near each other, each charge exerts the same force on the other. This force is either attractive or repulsive (remember, opposites attract and like forces repel). If two positive or negative charges are near each other, each charged particle exerts a repulsive force on the other; likewise, if a positively charged particle and a negatively charged particle are near each other, each exerts an attractive force on the other. We can quantify this force usingΒ Coulomb's law:
Let's go over an example of how we can use Coulomb's Law to find how much force one charge exerts on another. Assume we have two atoms: Atom 1 has one additional electron added, and Atom 2 is missing 1 electron. Both of these two atoms are 0.5 m away from one another. What is the electric force on one of the charges?
The first step to solving this problem is to plug each given variable into Coulomb's Law. After inserting values and solving for Fe, we should get:
Like with other forces, when multiple electric forces act on one charge, we can add up those forces to find the net force on the charge. We treat forces as vectors and add up force like vectors.
In this example, letβs assume that Atoms 1 and 2 have a positive charge and Atom 3 has a negative charge. To find the net force on Atom 1, we would add up the forces from Atoms 2 and 3 to get a net force pointing towards the right, greater than each F2 and F3 individually. Atom 2 repulses Atom 1 to the right, and Atom 3 attracts 1 to the right, so we should have a net force pointing to the right equal to the sum of F2 and F3.
Use Coulomb's law and your knowledge of splitting apart and adding together components of forces to solve these practice problems! You'll need the following values to solve these questions:Β
charge of an electron = 1.602 x 10^(-19) C
and
k = 8.99 x 10^(9) Nm^(2)/C^(2)
<< Hide Menu
Briana Dokken
Briana Dokken
As of 2021, College Board only tests Units 1-7 on the AP Physics 1 exam. This page's content will not be tested on the exam, but we kept it online for you all as a resource.
Charge is a property of matter, just like mass, physical state, or density. When an atom has the same number ofΒ protons (positively charged particles) andΒ electrons (negatively charged particles), the positive and negative charges of the atom cancel out, and its net charge is 0; we refer to the atom as uncharged when this occurs. However, when electrons are taken away or added to an atom, it becomes charged. Charge depends entirely on the movement of electrons.Β Β Β
There are two kinds of charge: positive charge and negative charge. Electrons have a negative charge, so an atom becomes negatively charged when it has additional electrons. When you take away electrons from an atom, it becomes positively charged because the substance's protons outnumber the number of electrons. Like with magnets, opposite forces attract and like forces repel when discussing protons and electrons. Therefore:
The arrangement of electrons can also influence charge. A substance can have a partial charge and repel or attract other charged objects, even if there is no change in electron count, like in the case of dipoles. For example, if a substance's electrons move to one side, that occupied half will have a partial negative charge, and the other side will have a partial positive charge. Physicists refer to this separation of positive and negative charges as aΒ dipole.
Often, we call charged particles "charges" or "point charges" if we assume that the charge focuses at a single point. If you see the word "charge" from here on out, know that it means a charged particle.
When two charges are near each other, each charge exerts the same force on the other. This force is either attractive or repulsive (remember, opposites attract and like forces repel). If two positive or negative charges are near each other, each charged particle exerts a repulsive force on the other; likewise, if a positively charged particle and a negatively charged particle are near each other, each exerts an attractive force on the other. We can quantify this force usingΒ Coulomb's law:
Let's go over an example of how we can use Coulomb's Law to find how much force one charge exerts on another. Assume we have two atoms: Atom 1 has one additional electron added, and Atom 2 is missing 1 electron. Both of these two atoms are 0.5 m away from one another. What is the electric force on one of the charges?
The first step to solving this problem is to plug each given variable into Coulomb's Law. After inserting values and solving for Fe, we should get:
Like with other forces, when multiple electric forces act on one charge, we can add up those forces to find the net force on the charge. We treat forces as vectors and add up force like vectors.
In this example, letβs assume that Atoms 1 and 2 have a positive charge and Atom 3 has a negative charge. To find the net force on Atom 1, we would add up the forces from Atoms 2 and 3 to get a net force pointing towards the right, greater than each F2 and F3 individually. Atom 2 repulses Atom 1 to the right, and Atom 3 attracts 1 to the right, so we should have a net force pointing to the right equal to the sum of F2 and F3.
Use Coulomb's law and your knowledge of splitting apart and adding together components of forces to solve these practice problems! You'll need the following values to solve these questions:Β
charge of an electron = 1.602 x 10^(-19) C
and
k = 8.99 x 10^(9) Nm^(2)/C^(2)
Β© 2024 Fiveable Inc. All rights reserved.