Browse By Unit
4 min readโขjune 18, 2024
Peter Apps
Kashvi Panjolia
Peter Apps
Kashvi Panjolia
A gravitational field g at the location of an object with mass m causes a gravitational force of magnitude mg to be exerted on the object in the direction of the field.
Aย gravitational field is a region of space in which a physical body, such as a planet or a star, exerts a force on any other body within that region. The force that a body experiences in a gravitational field is caused by the presence of mass in the space around it. The strength of the gravitational field at a particular point is represented by the gravitational force per unit mass, also known as the gravitational acceleration (g). The gravitational field can be represented by a vector field, meaning that it has both magnitude and direction.
The gravitational field caused by a spherically symmetric object with mass is radial and, outside the object, varies as the inverse square of the radial distance from the center of that object. Sound familiar? The equation for a gravitational field can be derived from the equation for Newton's Universal Law of Gravitation and is used to find the gravitational field of a planet or other object based on its mass. Let's derive it using Newton's Second Law for a satellite orbiting a planet:
One more important idea we can glean from this equation is that the mass of the satellite or object in orbitย doesn't matter, so the acceleration of gravity for all objects a certain distance away is the same, regardless of the mass of the object in orbit. Also, the r value in this equation represents the radius from the center of mass of the planet to the center of mass of the orbiting object, so you may have to add the distance an object is away from the planet to obtain the correct answer.
2. A planet has a mass of 6 x 10^24 kg and a radius of 6 x 10^6 m. Calculate the gravitational acceleration (g) on its surface.
a) 7.2 m/s^2
b) 9.8 m/s^2
c) 10.4 m/s^2
d) 18.6 m/s^2 Answer: d) 9.8 m/s^2
Explanation: g = Gm/r^2 = (6.67 x 10^-11 N*(m^2)/(kg^2))(6 x 10^24 kg) / (6 x 10^6 m)^2 = 9.8 m/s^2
3. How does the strength of the gravitational field change if the distance between two masses is doubled? a) It remains the same b) It is halved c) It is quartered d) It is doubled Answer: c) It is quartered
4. An object is located at a distance of 2 x 10^8 m from a star with a mass of 2 x 10^30 kg. Calculate the gravitational force (F) acting on the object.
a) -3.35 x 10^-6 N b) -4.92 x 10^-12 N c) -5.98 x 10^-9 N d) -6.67 x 10^-11 N Answer: d) -6.67 x 10^-11 N
Explanation: F = Gm1m2/r^2 = (6.67 x 10^-11 N*(m^2)/(kg^2))(2 x 10^30 kg)(1 kg) / (2 x 10^8 m)^2 = 6.67 x 10^-11 N
5. A planet has a mass of 6 x 10^24 kg and a radius of 6 x 10^6 m. What is the gravitational force (F) acting on an object with a mass of 50 kg located on the surface of the planet? a) 3 x 10^9 N b) 3 x 10^10 N c) 3 x 10^11 N d) 3 x 10^12 N Answer: b) 3 x 10^10 N (F = Gm1m2/r^2, where m1=mass of the planet, m2=mass of the object, r= radius of the planet, and G= gravitational constant)
๐ฅWatch: AP Physics 1 -ย Unit 3 Streams
<< Hide Menu
4 min readโขjune 18, 2024
Peter Apps
Kashvi Panjolia
Peter Apps
Kashvi Panjolia
A gravitational field g at the location of an object with mass m causes a gravitational force of magnitude mg to be exerted on the object in the direction of the field.
Aย gravitational field is a region of space in which a physical body, such as a planet or a star, exerts a force on any other body within that region. The force that a body experiences in a gravitational field is caused by the presence of mass in the space around it. The strength of the gravitational field at a particular point is represented by the gravitational force per unit mass, also known as the gravitational acceleration (g). The gravitational field can be represented by a vector field, meaning that it has both magnitude and direction.
The gravitational field caused by a spherically symmetric object with mass is radial and, outside the object, varies as the inverse square of the radial distance from the center of that object. Sound familiar? The equation for a gravitational field can be derived from the equation for Newton's Universal Law of Gravitation and is used to find the gravitational field of a planet or other object based on its mass. Let's derive it using Newton's Second Law for a satellite orbiting a planet:
One more important idea we can glean from this equation is that the mass of the satellite or object in orbitย doesn't matter, so the acceleration of gravity for all objects a certain distance away is the same, regardless of the mass of the object in orbit. Also, the r value in this equation represents the radius from the center of mass of the planet to the center of mass of the orbiting object, so you may have to add the distance an object is away from the planet to obtain the correct answer.
2. A planet has a mass of 6 x 10^24 kg and a radius of 6 x 10^6 m. Calculate the gravitational acceleration (g) on its surface.
a) 7.2 m/s^2
b) 9.8 m/s^2
c) 10.4 m/s^2
d) 18.6 m/s^2 Answer: d) 9.8 m/s^2
Explanation: g = Gm/r^2 = (6.67 x 10^-11 N*(m^2)/(kg^2))(6 x 10^24 kg) / (6 x 10^6 m)^2 = 9.8 m/s^2
3. How does the strength of the gravitational field change if the distance between two masses is doubled? a) It remains the same b) It is halved c) It is quartered d) It is doubled Answer: c) It is quartered
4. An object is located at a distance of 2 x 10^8 m from a star with a mass of 2 x 10^30 kg. Calculate the gravitational force (F) acting on the object.
a) -3.35 x 10^-6 N b) -4.92 x 10^-12 N c) -5.98 x 10^-9 N d) -6.67 x 10^-11 N Answer: d) -6.67 x 10^-11 N
Explanation: F = Gm1m2/r^2 = (6.67 x 10^-11 N*(m^2)/(kg^2))(2 x 10^30 kg)(1 kg) / (2 x 10^8 m)^2 = 6.67 x 10^-11 N
5. A planet has a mass of 6 x 10^24 kg and a radius of 6 x 10^6 m. What is the gravitational force (F) acting on an object with a mass of 50 kg located on the surface of the planet? a) 3 x 10^9 N b) 3 x 10^10 N c) 3 x 10^11 N d) 3 x 10^12 N Answer: b) 3 x 10^10 N (F = Gm1m2/r^2, where m1=mass of the planet, m2=mass of the object, r= radius of the planet, and G= gravitational constant)
๐ฅWatch: AP Physics 1 -ย Unit 3 Streams
ยฉ 2024 Fiveable Inc. All rights reserved.