Browse By Unit
6 min readโขjune 18, 2024
Peter Apps
Kashvi Panjolia
Peter Apps
Kashvi Panjolia
The acceleration is equal to the rate of change of velocity with time, and velocity is equal to the rate of change of position with time.
Centripetal acceleration is the acceleration that an object experiences when it moves in a circular path. This acceleration is directed toward the center of the circle. It is also known asย radial acceleration.
Imagine you are on a roller coaster and you experience the feeling of being pulled toward the center of the loop as you go through a loop-the-loop. This is an example of centripetal acceleration. The force that is pulling you toward the center of the loop is the centripetal force.ย
Theย center of mass (COM) of a system is a point that represents the average position of all the mass in the system. Conceptually, it is the point where the entire mass of the system can be considered to be concentrated, which makes it the point at which the system would balance if it were suspended by a single point. The position of the center of mass depends on the distribution of mass within the system.
Consider a seesaw in a playground. The center of mass of a seesaw is located at the point where the board of the seesaw balances. This point is also known as the pivot point. If you place a heavier person on one side of the seesaw, the center of mass will shift closer to that side, and the seesaw will tilt in that direction.
For example, if you want to know how fast a car is moving, you can measure its velocity. If you want to know how fast the car's velocity is changing, you can measure its acceleration. Similarly, if you want to know how fast the center of mass of a system is moving, you can measure its center of mass velocity, and if you want to know how fast the center of mass velocity is changing, you can measure the acceleration of the center of mass.
While the centripetal acceleration points towards the center of the circle, the velocity vector does not. A key element of uniform circular motion is that the velocity is kept constant, so in order to have acceleration due to a change in direction only, the velocity vector must beย tangent to the acceleration vector at all points along the circle. Tangent means that the velocity vector makes aย 90-degree angle with the centripetal acceleration vector when the vectors are placed tail to tail.
We can relate the centripetal acceleration to the tangential velocity using this equation:
Theย centripetal force is defined as the force that is required to make an object move in a circular path. It is equal to the mass of the object multiplied by the centripetal acceleration. The formula for centripetal force is: F = m * a_c, where F is the centripetal force, m is the mass of the object and a_c is the centripetal acceleration.
Recall that the centripetal force is not a new force; it is just another name for the net force directed toward the center of the circle. This net force could be caused by the normal force, tension, gravitational force, friction, or another type of force.
For example, when a car takes a turn, the tires exert friction on the road, and the friction force is what provides the centripetal force to keep the car moving in a circular path. Similarly, when a planet is orbiting the sun, it is the gravitational force of the sun that acts as the centripetal force.
The direction of the centripetal force vector is always pointed toward the center of the circle, like the acceleration vector. This occurs because the accleration vector always points in theย same direction as the net force vector (in this case, the centripetal force) due to Newton's Second Law (F=ma).
It's also important to note that the greater the speed of an object, the greater the centripetal force required to keep it moving in a circular path. Similarly, the smaller the radius of a circular path, the greater the centripetal force required to keep an object moving in that path.
Answer: A) Radial
2. An object of mass 5 kg is moving in a circular path of radius 3 m with a constant velocity of 4 m/s. What is the centripetal acceleration of the object? A) 12 m/s^2 B) 16 m/s^2 C) 20 m/s^2 D) 5.33 m/s^2
Answer: D) 5.33 m/s^2 Explanation: To find the centripetal acceleration, we use the formula a_c = v^2/r, where a_c is the centripetal acceleration, v is the velocity of the object and r is the radius of the circular path. Substituting the given values, we get a_c = (4 m/s)^2 / 3 m = 16 m/s^2 / 3 m = 5.33 m/s^2
3. A ball of mass 1 kg is tied to a string and is moving in a circular path of radius 0.5 m. If the ball is moving with a velocity of 3 m/s, what is the centripetal force acting on the ball? A) 2.25 N B) 4.5 N C) 9 N D) 1.5 N
Answer: D) 1.5 N Explanation: The centripetal force acting on an object in uniform circular motion is given by the formula F = m * a_c, where F is the centripetal force, m is the mass of the object and a_c is the centripetal acceleration. To find the centripetal acceleration, we use the formula a_c = v^2/r, where a_c is the centripetal acceleration, v is the velocity of the object and r is the radius of the circular path. By substituting the given values, we get a_c = (3 m/s)^2 / 0.5 m = 9 m^2/s^2 / 0.5 m = 18 m/s^2Then we can use the formula F = m * a_c to find the centripetal force acting on the ball, we know the mass of the ball is 1 kg, so we substitute the values into the formula: F = m * a_c = 1 kg * 18 m/s^2 = 18 N
<< Hide Menu
6 min readโขjune 18, 2024
Peter Apps
Kashvi Panjolia
Peter Apps
Kashvi Panjolia
The acceleration is equal to the rate of change of velocity with time, and velocity is equal to the rate of change of position with time.
Centripetal acceleration is the acceleration that an object experiences when it moves in a circular path. This acceleration is directed toward the center of the circle. It is also known asย radial acceleration.
Imagine you are on a roller coaster and you experience the feeling of being pulled toward the center of the loop as you go through a loop-the-loop. This is an example of centripetal acceleration. The force that is pulling you toward the center of the loop is the centripetal force.ย
Theย center of mass (COM) of a system is a point that represents the average position of all the mass in the system. Conceptually, it is the point where the entire mass of the system can be considered to be concentrated, which makes it the point at which the system would balance if it were suspended by a single point. The position of the center of mass depends on the distribution of mass within the system.
Consider a seesaw in a playground. The center of mass of a seesaw is located at the point where the board of the seesaw balances. This point is also known as the pivot point. If you place a heavier person on one side of the seesaw, the center of mass will shift closer to that side, and the seesaw will tilt in that direction.
For example, if you want to know how fast a car is moving, you can measure its velocity. If you want to know how fast the car's velocity is changing, you can measure its acceleration. Similarly, if you want to know how fast the center of mass of a system is moving, you can measure its center of mass velocity, and if you want to know how fast the center of mass velocity is changing, you can measure the acceleration of the center of mass.
While the centripetal acceleration points towards the center of the circle, the velocity vector does not. A key element of uniform circular motion is that the velocity is kept constant, so in order to have acceleration due to a change in direction only, the velocity vector must beย tangent to the acceleration vector at all points along the circle. Tangent means that the velocity vector makes aย 90-degree angle with the centripetal acceleration vector when the vectors are placed tail to tail.
We can relate the centripetal acceleration to the tangential velocity using this equation:
Theย centripetal force is defined as the force that is required to make an object move in a circular path. It is equal to the mass of the object multiplied by the centripetal acceleration. The formula for centripetal force is: F = m * a_c, where F is the centripetal force, m is the mass of the object and a_c is the centripetal acceleration.
Recall that the centripetal force is not a new force; it is just another name for the net force directed toward the center of the circle. This net force could be caused by the normal force, tension, gravitational force, friction, or another type of force.
For example, when a car takes a turn, the tires exert friction on the road, and the friction force is what provides the centripetal force to keep the car moving in a circular path. Similarly, when a planet is orbiting the sun, it is the gravitational force of the sun that acts as the centripetal force.
The direction of the centripetal force vector is always pointed toward the center of the circle, like the acceleration vector. This occurs because the accleration vector always points in theย same direction as the net force vector (in this case, the centripetal force) due to Newton's Second Law (F=ma).
It's also important to note that the greater the speed of an object, the greater the centripetal force required to keep it moving in a circular path. Similarly, the smaller the radius of a circular path, the greater the centripetal force required to keep an object moving in that path.
Answer: A) Radial
2. An object of mass 5 kg is moving in a circular path of radius 3 m with a constant velocity of 4 m/s. What is the centripetal acceleration of the object? A) 12 m/s^2 B) 16 m/s^2 C) 20 m/s^2 D) 5.33 m/s^2
Answer: D) 5.33 m/s^2 Explanation: To find the centripetal acceleration, we use the formula a_c = v^2/r, where a_c is the centripetal acceleration, v is the velocity of the object and r is the radius of the circular path. Substituting the given values, we get a_c = (4 m/s)^2 / 3 m = 16 m/s^2 / 3 m = 5.33 m/s^2
3. A ball of mass 1 kg is tied to a string and is moving in a circular path of radius 0.5 m. If the ball is moving with a velocity of 3 m/s, what is the centripetal force acting on the ball? A) 2.25 N B) 4.5 N C) 9 N D) 1.5 N
Answer: D) 1.5 N Explanation: The centripetal force acting on an object in uniform circular motion is given by the formula F = m * a_c, where F is the centripetal force, m is the mass of the object and a_c is the centripetal acceleration. To find the centripetal acceleration, we use the formula a_c = v^2/r, where a_c is the centripetal acceleration, v is the velocity of the object and r is the radius of the circular path. By substituting the given values, we get a_c = (3 m/s)^2 / 0.5 m = 9 m^2/s^2 / 0.5 m = 18 m/s^2Then we can use the formula F = m * a_c to find the centripetal force acting on the ball, we know the mass of the ball is 1 kg, so we substitute the values into the formula: F = m * a_c = 1 kg * 18 m/s^2 = 18 N
ยฉ 2024 Fiveable Inc. All rights reserved.