Jed Quiaoit
Samantha Himegarner
Jed Quiaoit
Samantha Himegarner
The Hardy-Weinberg equilibrium is a theoretical model that describes how allele frequencies in a population will remain constant over time in the absence of certain influences, such as natural selection, genetic drift, mutation, and migration.
In general, The model assumes that the population is large, randomly mating, and not subject to any influences that would affect the frequency of alleles. (We'll dive deeper into these conditions later!) 🧉
Under these conditions, the frequency of alleles in the population will remain constant from generation to generation. Applications-wise, the Hardy-Weinberg equilibrium provides a baseline against which actual population data can be compared to assess whether evolution is occurring.
The Hardy-Weinberg equilibrium is a model in which allele frequencies will not change if these five conditions exist:
The calculated ratios under this control population can serve as a null hypothesis for evolution. The allele frequencies in a population are calculated from the genotypic ratios. Here’s how:
For the first equation, p2 represents the frequency of a homozygous dominant genotype, 2pq represents the frequency of a heterozygous genotype, and q2 represents the frequency of the homozygous recessive genotype. Keeping all that in mind, the first thing to do in the process of calculating is to determine the frequency of the recessive genotype. This is the only genotype that can be determined from the phenotypic ratios (a dominant phenotype could be either homozygous dominant or heterozygous).
The frequency of the recessive genotype will be equal to q2. Therefore, q can be found by taking the square root of that number. Then, subtract this number from 1 to find p, or the frequency of the dominant phenotype in a population.
Once the variable p is found, it can be put into the first equation to find the genotypic ratios of a population.
To solve this question, you would first assign the frequency of the recessive allele, "a", as "q" and the frequency of the dominant allele, "A", as "p". Since "A" and "a" are codominant, the sum of p and q is equal to 1.
The equation for calculating Hardy-Weinberg equilibrium is p^2 + 2pq + q^2 = 1.
We know that q = 0.02, so we can substitute that into the equation, to calculate p:
p = 1 - q = 1 - 0.02 = 0.98
The frequency of individuals who are homozygous recessive (aa) is: q^2 = 0.02^2 = 0.0004, or 0.04%.
The frequency of individuals who are heterozygous (Aa) is: 2pq = 2(0.98)(0.02) = 0.0392, or 3.92%.
With this problem, we are making the assumptions of the Hardy-Weinberg equilibrium such as:
Check out the AP Bio Unit 7 Replays or watch the 2021 Unit 7 Cram
<< Hide Menu
Jed Quiaoit
Samantha Himegarner
Jed Quiaoit
Samantha Himegarner
The Hardy-Weinberg equilibrium is a theoretical model that describes how allele frequencies in a population will remain constant over time in the absence of certain influences, such as natural selection, genetic drift, mutation, and migration.
In general, The model assumes that the population is large, randomly mating, and not subject to any influences that would affect the frequency of alleles. (We'll dive deeper into these conditions later!) 🧉
Under these conditions, the frequency of alleles in the population will remain constant from generation to generation. Applications-wise, the Hardy-Weinberg equilibrium provides a baseline against which actual population data can be compared to assess whether evolution is occurring.
The Hardy-Weinberg equilibrium is a model in which allele frequencies will not change if these five conditions exist:
The calculated ratios under this control population can serve as a null hypothesis for evolution. The allele frequencies in a population are calculated from the genotypic ratios. Here’s how:
For the first equation, p2 represents the frequency of a homozygous dominant genotype, 2pq represents the frequency of a heterozygous genotype, and q2 represents the frequency of the homozygous recessive genotype. Keeping all that in mind, the first thing to do in the process of calculating is to determine the frequency of the recessive genotype. This is the only genotype that can be determined from the phenotypic ratios (a dominant phenotype could be either homozygous dominant or heterozygous).
The frequency of the recessive genotype will be equal to q2. Therefore, q can be found by taking the square root of that number. Then, subtract this number from 1 to find p, or the frequency of the dominant phenotype in a population.
Once the variable p is found, it can be put into the first equation to find the genotypic ratios of a population.
To solve this question, you would first assign the frequency of the recessive allele, "a", as "q" and the frequency of the dominant allele, "A", as "p". Since "A" and "a" are codominant, the sum of p and q is equal to 1.
The equation for calculating Hardy-Weinberg equilibrium is p^2 + 2pq + q^2 = 1.
We know that q = 0.02, so we can substitute that into the equation, to calculate p:
p = 1 - q = 1 - 0.02 = 0.98
The frequency of individuals who are homozygous recessive (aa) is: q^2 = 0.02^2 = 0.0004, or 0.04%.
The frequency of individuals who are heterozygous (Aa) is: 2pq = 2(0.98)(0.02) = 0.0392, or 3.92%.
With this problem, we are making the assumptions of the Hardy-Weinberg equilibrium such as:
Check out the AP Bio Unit 7 Replays or watch the 2021 Unit 7 Cram
© 2025 Fiveable Inc. All rights reserved.